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9SS, UK 

Received 2 February 1988 

Abstract. The Parisi-Sourlas mechanism is demonstrated directly for fields over pseudo- 
Euclidean space, without the use of Wick rotations, superspace or Berezin integration. An 
irreducible field supermultiplet for the Lie superalgebra iosp( m, 4 2 )  is constructed using 
a modified version of the method of produced representations, and a (1, 1)-dimensional 
reduction obtained through examination of the metric. 

1. Introduction 

The argument of Parisi and Sourlas (Parisi and Sourlas 1979) demonstrates that a 
( d  + 2)-dimensional scalar field coupled to an external random source is equivalent 
to a free d-dimensional scalar field. The original applications of the argument were 
to a spin system in a random magnetic field (see, e.g., Kogon and Wallace (1981) and 
references therein) but quantum field theory formulations are equally possible. In 
order to calculate Green functions for the ( d  +2)-dimensional field, ghost fields are 
introduced and it is a supersymmetric invariance of the resulting Lagrangian which is 
responsible for the equivalence with the d-dimensional system. These supersymmetry 
transformations, together with the spatial rotational symmetry, the symplectic symmetry 
of the ghost fields and the translational and supertranslational invariance of the Green 
functions, form the inhomogeneous orthosymplectic Lie superalgebra iosp( d + 2 I2), 
the even part of which is iso(d+2)0sp(2) .  The original scalar field, the ghost fields 
and the random source form an iosp( d + 2 12) supermultiplet. 

Most treatments of the Parisi-Sourlas argument (e.g., Parisi and Sourlas 1979, 
Cardy 1983, Klein and Perez 1983, McClain et a1 1983, Klein et al 1984) introduce a 
superspace formalism, and show that a Berezin integral over ( d  + 2 12) superspace with 
an iosp-invariant integrand is equal to a d-dimensional integral over ordinary space 
with a similar integrand. This result is the key to showing that superfields which are 
invariant under an osp(2 12) sub-superaigebra have Green functions identical to those 
of an ordinary scalar field in d dimensions. 

The treatments mentioned are all for Euclidean field theories, so a Wick rotation 
is necessary before the procedure can be applied to relativistic field theories. Recently, 
there has been interest in the use of iosp(d, 2 12) superfields to covariantly quantise 
d-dimensional gauge and string theories in the BRST formalism, making use of the 
Parisi-Sourlas mechanism (Siege1 and Zwieback 1987, Neveu and West 1986). Unfortu- 
nately, the validity of the Wick rotation procedure here is unclear, so a pseudo- 
Euclidean version of the Parisi-Sourlas argument is desirable. 
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In this paper, an argument is given that proves the validity of the key step of the 
Parisi-Sourlas mechanism for a (1, 1)-dimensional reduction from an (m, n)- 
dimensional pseudo-Euclidean theory to an ( m  - 1, n - 1)-dimensional theory. The 
Wick rotation procedure is avoided completely. The construction is wholly algebraic 
for the odd part of the superalgebra and uses no supergroups, superspace coordinates 
or superfields, so it automatically gives irreducible field multiplets. 

In 0 2, an irreducible representation of the iosp( m, n 12) superalgebra is constructed 
using the wholly algebraic method of produced representations appropriate to a 
classical field theory (Blattner 1969). (Here ‘produced representation’, ‘production’, 
etc, are used in a technical sense similar to that of induced representations (Higman 
1955). The term ‘co-induced’ can also be found in the literature (e.g., Dixmier 1977).) 
As it stands, this representation cannot be used directly as a supermultiplet, so in Q 3 
use is made of an analogy with ordinary PoincarC field theories to modify the produced 
representation. The result is a unitary irreducible representation carried by a multiplet 
of massless fields in (m, n)-dimensional momentum space. The metric of the multiplet 
is examined in 0 4, and the pseudo-Euclidean dimensional reduction is demonstrated. 

The notation throughout this paper uses ‘light-cone’ coordinates for the (m, n)- 
dimensional space, with indices a, 6, c, d taking the values 1, . . . , m + n - 2, +, -( m, n > 
1); indices A, p, v, p the values 1, . . . , m + n - 2; and indices for symplectic space 
a, p, y, S = 1,2. Square brackets [’, -1  denote graded Lie products. The pseudo- 
orthogonal and symplectic metric tensors are 

g,@ = diag(-1, . . . , -1,1, . . . , 1) (with - 1  occuring m - 1 times and 1 n - 1 times) 

g + +  = g - -  = g , ,  = g,+ = g - ,  = g , -  = 0 

and 

g - +  = g + -  = 1 

An orthosymplectic metric tensor can be defined as a square supermatrix G (with 
m + n even rows and two odd rows) having g a b  and Rap in the diagonal partitions 
and zero elsewhere. The orthosymplectic superalgebra osp( m, n 12) is then the set of 
real square supermatrices M (with m + n even rows and two odd rows) satisfying 

M”‘G + (-  1 ) I ‘ I ~ ~  = o 
where st denotes the supertranspose and IMI the degree of M. 

2. Production of the representation 

Before starting to construct the produced representation, it is well to have an explicit 
statement of the basis and graded Lie products of iosp(m, n 12). Let J a b ,  K a p ,  Lap, Pa ,  
Qa be basis elements for the complexification of iosp( m, n I2), with graded Lie products 

[ J a b ,  JcdI = - i h ( g a c J b d  -gbcJad  + g b d J a c - g a d J b r )  (2 . la)  

[KaB, Kysl = ( R a y & ,  + R o y  Ka, + K e y  + f l u 6  K p y )  (2.16) 

[ J a b ,  K y b l = O  (2.lc) 

[ J a b ,  = - i h ( g a c L b 8  - g b c L a S )  (2.ld) 
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[Pa, P b l =  [ P a ,  Q,l= [Qu, QPI =o. (2.11) 

Comments. The basis elements Jab and P, generate ISOo(m, n )  rotations and transla- 
tions, K,, the symplectic rotations and the odd elements La, and Q, the super-rotations 
and supertranslations. The elements (i/h)J,b, (i/h)K,,, ( e ' " ' ' / / )~ ,~ ,  ( i /h)Pa and 
(ei"'4/h)Qu form a basis for the real Lie superalgebra iosp(m, n12),  but the given 
elements are convenient because they may be represented by pseudo-Hermitian 
operators (i.e. the even elements by Hermitian operators and the odd elements by 
anti-Hermitian operators). 

The inhomogeneous elements P, and Qa span an Abelian, invariant sub-super- 
algebra, here denoted i( m, n I2), which can be used to obtain an irreducible produced 
representation of iosp( m, n 12), as follows. Let x be the one-dimensional (irreducible) 
representation of i( m, n 12) given by 

x( P - )  = 1 

x( p+) = x( PA ) = x ( Qu ) = 

x(PP+ QQ) =o. ( 2 . 3 )  

( 2 . 2 )  

Note that 

The little superalgebra of the homogeneous sub-superalgebra osp( m, n 12) for x, 

( 2 . 4 )  

is isomorphic to iosp(m - 1, n - 112) with basis elements J A p ,  K,,,  LA,, J+A,-L+,, the 
last two sets forming a basis for the inhomogeneous part. Irreducible representations 
of this little superalgebra can be obtained by repeated induction or production, with 
finite-dimensional representations arising when the inhomogeneous part is represented 
trivially. However, to construct the simplest iosp( m, n 12) representation, the whole of 
the iosp( m - 1, n - 1 12) little superalgebra can be represented trivially. That is, take 
A to be the representation 

( 2 . 5 )  

The stability superalgebra s ( x )  for x, which consists of all elements X of the whole 
of iosp( m, n 12) satisfying ( 2 . 4 ) ,  is just the vector-space direct sum of the little super- 
algebra iosp( m - 1 ,  n - 1 12) and the inhomogeneous part i(m, n 12). Let XA denote the 
representation of s ( x )  which is equal to x for elements of i( m, n 12) and A for elements 
of iosp( m - 1, n - 1 12). 

consisting of all elements X of osp( m, n 12) for which 

x ( [ X ,  Pal) = x ( [ X ,  QUI) = 0 

A(J,i,) = A(&,) = A(LAp)  = A(J+A) = A(L+,)  = 0. 
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The elements J - ^ ,  J - +  and J - ,  form a basis for the remainder of iosp( m, n 12) (as 
a vector space only), and thus generate a basis for the carrier space, 2, of the universal 
enveloping algebra U(iosp(m, n12)) regarded as a left s(x)-module (see, e.g., Kac 
1977). The basis elements of Z are of the form llA J?AJ?+L?, L?*, where r, ,  rA E N  
and s,,  s2 E (0 ,  1). These can be abbreviated to 

with r E N"'+n-2 and s E (0, 1) x (0, 1). 
With these definitions, the produced representation (@, V) of iosp( m, n 12) can be 

constructed. The carrier space is the space of s(x)-homomorphisms V = Hom,,,,(Z, C), 
which is the set of linear mappings 4 in L(Z, C) with 

4(  YJ'L') = x A (  Y ) 4 (  J'L') V Y E s ( x ) ,  Vr ,  s. (2 .7)  

Elements X of iosp(m, n 12) are represented by operators @ ( X )  which act on &J E V 
to give @ ( X ) 4  E V defined by 

@(X)4(  J'L') = C#J( J'L'X) Vr,  s. (2.8) 

The construction of the simplest irreducible produced representation is thus com- 
plete. It remains only to use the graded Lie products (2 .1)  to reduce the term J'L'X 
to terms of the form YJ'L" with Y E  s ( x ) ,  and then to use (2.7), (2 .2)  and (2.5) to 
complete the evaluation of (2.8). However, this procedure is impractical and the 
representation as it stands bears little resemblance to field theory. So the representation 
must be modified to an equivalent form carried by functions over coordinate or 
momentum space. 

3. Momentum space representation 

An alternative, more practical realisation of the produced representation of iosp( m, n 12) 
is required before explicit evaluation of the linear operators can be achieved. Such a 
realisation can be motivated by examination of the simpler case of an ordinary Lie 
algebra. 

Consider the Lie algebra iso( m, n )  (which is an even subalgebra of iosp( m, n 12)). 
The restrictions of the representations x and A to i( m, n )  and so( m, n )  can be used to 
construct an irreducible produced representation of iso( m, n )  in exactly the same 
manner as in 0 2. The little algebra of so(m, n )  in this case is iso(m - 1 ,  n - l ) ,  the 
remaining basis elements of so(m, n )  being J-A and J-+,  and the stability subalgebra 
is so(x) = i(m, n)Oiso(m - 1,  n - 1 ) .  Denote the produced iso(m, n )  representation by 
(ao, V,). The carrier space is Vo= Hom,,,,(Z,, e) ,  the set of 4 , ~  L(Z, ,  02) satisfying 
the analogue of (2.7): 

40( YOJ') = x u  Y0)40( J ' )  V Y ~ E  s (x) ,  r E N"'+~-* (3.1) 

where the basis elements of 2, are J' with rENm+n-2 .  Likewise, elements X, of 
iso(m, n )  are represented by operators Q o ( X o )  with, for 4 , ~  V,, 

Q O ( X O M O ( J ' )  = 40(JrXo) V r  E W"n-2. (3.2) 
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Evaluating the expressions J'X, is still very difficult. For this reason it is convenient 
to make use of the equivalent induced representation (@A, Vb) of the Lie group 
ISOo(m, n ) .  The little group for ISOo( m, n )  is isomorphic to ISOo(m - 1 ,  n - l ) ,  
so the carrier space is Vb= C"(Zb, C), where Zb is the coset space of ISOo(m, n )  
and the stability subgroup S , ( x )  = Z(m, n)@ISO,(m - 1 ,  n - l ) ,  or equivalently, 
SOo(m, n ) / I S O , ( m - l ,  n - 1 ) .  This is isomorphic to the null surface in (m, n ) -  
dimensional pseudo-Euclidean space, which can be parametrised by m + n coordinates 
p a  satisfying p p = O  (but not p =O). For 4 ; ~  Vb, the generators of this induced 
representation 

(3 .3a )  

(3 .3b)  

(@b, Vh) extends to a representation of the universal enveloping algebra U(iso(m, n ) ) .  
The equivalence between the induced representation ( 3 . 3 )  and the produced one 

(3.1,  3.2) for the Lie algebra is given (Blattner 1969) by assigning, for each +;E V;, 
a function L(U(iso( m, n ) ) ,  C) defined by 

4 d A )  = @ X A ) 4 X k )  V A  E U(iso( m, n ) )  

where k E 2; is the stable point of the ISOo( m - 1 ,  n - 1 )  subgroup. It is not hard to 
show that in fact 4, satisfies ( 3 . 1 )  and thus lies in V,. Further, if 

* b =  @b(XoMb 

for some X ,  E iso( m, n ) ,  then the function Go E Vo assigned to $; as above satisfies 

$0 = @O(XO) do. 
In this way, the representations (a,, V,) and (@A, Vb) are essentially equivalent, 

so henceforth the primes will (almost) be abandoned. Which realisation is being used 
will be apparent from the argument of the function. 

Returning to the superalgebra, there is a difficulty in simply extending the 
equivalence just presented to one between a produced superalgebra representation and 
an induced supergroup representation. An irreducible representation of a Lie super- 
algebra gives rise to a representation of a corresponding Lie supergroup. However, 
the supergroup representation may no longer be irreducible, but instead may become 
reducible (although perhaps not completely reducible), with the irreducible diagonal 
components being various induced representations of the Lie supergroup. This is so, 
for example, for the super-Poincar6 algebra and super-Poincar6 group (Williams and 
Cornwell 1987a, b). The relationship between Lie supergroup and superalgebra rep- 
resentations is thus much more complicated than that for plain Lie groups and algebras. 
Fortunately, for iosp( m, n 12) it is possible to avoid this difficulty by exploiting the 
correspondence just for the iso(m, n )  subalgebra and the ordinary Lie group ISO,( m, n). 

V, given 
by 

Note that 2, is a subspace of Z, so for every 4 E V there is a function 

40=4l4, 
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which can be expressed as a function over either Zo or 2;. Since 

4(  J'L") = @( L')4(  J') 

there is a one-to-one equivalence between a function 4 E V and a set of four functions 
in Vo (or V;): $J~, ( @ ( L - l ) 4 ) o ,  ( @ ( L - 2 ) 4 ) 0 ,  and ( @ ( L - ,  L - 2 ) 4 ) 0 .  Introducing the 
notation 

4(P)  = 4 o ( P )  

4(P, a) = ( @ ( L ) 4 ) o ( P )  

4(P, 4) = ( @ ( L L - @ ) 4 ) 0 ( P )  = -4(P, Pa) 

a function 4 E V is completely determined by evaluating 4 (  p ) ,  4( p ,  a ) ,  and 4(  p ,  ap)  
for a, p = 1 ,2  and all p in 2;. So, for each X E iosp( M, n 12) and 4 E V, the complete 
specification of @(X)q5 (which is also a member of V) requires the calculation of 
@ ( X ) 4 ( p ) ,  @ ( X ) 4 ( p ,  a), and @ ( X ) + ( p ,  cup). With these definitions, it is finally 
possible to evaluate the action of the operators of the produced representation from 
their definition (2.8). 

Proposition 3.1. The operators of the produced representation (@, V) of iosp(m, n 12) 

(3 .4e )  
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(3.4f) 

(3.4h) 

(3.44 

P- 

(3.41) 

Proof: Most of these transformations can be verified by straightforward application 
of the definition (2.8), the graded Lie products (2.1) and the property (2.7), together 
with the easily derived rules that for 4 E V: 

(i) for X E iso(m, n )  

(@(W4)0 = @O(X)4, 

@ ( A ) 4 ( p )  = @ ( A ’ ) 4 ( p )  

(ii) for A, A’ E U(iosp( m, n 12)) 

vp E 2; 
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if and only if 
vr E ~ m + n - 2  @ ( A ) 4 (  J ' )  = @ ( A ' ) d ( J ' )  

@ ( X ) 4 ( P ,  a) = * @ ( W ( @ ( L - a ) 4 ) ( P )  + W L - , ,  X l ) 4 ( p )  

@ ( X ) 4 ( P ,  4) = * @ ( X H @ ( L - p ) # ) ( P ,  a)+@([L-p ,  X l ) 4 ( P ,  a) 

(iii) for X E iosp( m, n 12) 

the + signs applying for X even, and the - signs for X odd. 
The evaluation of @ ( L K A a ) 4 ( p )  and @ ( L + , ) 4 ( p )  is not so straightforward, but 

the two are very similar, so just @( LA,)+( p )  will be shown here. Consider the action 
of LA, on a basis element J' of Zo. Using (2 .6)  and the commutation rule ( 2 . l d ) ,  it 
is easy to see that 

J'LA, = LA, J ' +  J'L- ,  

where J' E Zo depends upon r and A. Observing that LA, is an so(m - 1 ,  n - 1) vector, 
just as PA is, it follows from ( 2 . 6 )  and ( 2 . l g )  that 

J'P, = PA J ' +  J'P- 

with exactly the same J ' .  Hence, since [La, P-]  = 0 

J'L,, P- - LA, J'P- = J'P, L - ,  - PA J'L-, 

so that, using ( 2 . 7 )  and ( 2 . 5 ) ,  

@(LAmP-)4(  J ' )  = @ ( P A L - , ) 4 (  J ' ) .  

Finally, using results ( i )  and (ii), and [LA,, P - ]  = 0 ,  

@ ( L A a ) 4 ( p )  = (pA/P-)4(p, a). 

Comments. The irreducibility of this representation is demonstrated by the evaluation 
of the Casimir operator. Equations ( 3 . 4 f ) ,  ( 3 . 4 g ) ,  ( 3 . 4 h )  and (3.41) give 

@ ( PP + QQ ) = 0 

in accord with ( 2 . 3 ) .  Note that the iso(m-1, n - 1 )  subalgebra is represented 
'covariant1 y'. 

Having found an irreducible representation of iosp( m, n 121, an inner product is 
required under which the operators @ will be pseudo-Hermitian. This is necessary so 
that inner products in the supermultiplet are iosp-invariant. Again, the correspondence 
between Lie group and Lie algebra representations provides part of the answer. An 
invariant measure for Zh is d "+"p6( p ' ) ,  so the operators Q0 are Hermitian under the 
inner product for r # ~ ~ ,  +bo E V, given by 

( 4 0 ,  +o)o= d"+"pS(P2)40(P)*+o(P). 

What is required is some extension of this to 2, @ and K Unfortunately, the 
remainder of Z is not a Lie group coset space like Zh, so a naive extension is not 
possible. However, all that remains to be incorporated is the extra four-dimensional 
space with basis elements L", s E (0 , l )  x (0, l}, so it is not too difficult to find a promising 
candidate. 
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Proposition 3.2 Under the inner product for 4,+ E V defined by 

-4(P, . ) *+(P ,  P ) + 4 ( P , P ) * c L ( P ,  a)) (3.5) 

the operators of the irreducible produced representation (3.4) of iosp( m, n 12) are 
pseudo-Hermitian. 

Proof: Consider first the inner product 

(4 ,  + ) 1  = d"+"P s ( P 2 ) ~ " P { 4 ( P ,  . P ) * + ( P )  - 4 ( P ) * + ( P ,  4) 

-4(P,  a)*+(p,  P ) + 4 ( P ,  P)*cL(P,  a)>. (3.6) 

Direct evaluation using the explicit expressions (3.4) shows that under (3.6) the 
operators @ ( X )  of the irreducible representation are pseudo-Hermitian, excepf for 
X = J + * ,  J+- and L+a. For these, the combinations J+* -ihP, PI ' ,  J+- -ihP- PI' and 
L+, - ihQu Pr' are represented by pseudo-Hermitian operators. 

The inner product (3.5) is related to (3.6) by 

(4,  +) = (4,  @(p-)-2+), 

so the Hermiticity of @ ( X )  where [X, P-]=O is unaffected. For J + * ,  

[PI', J+,] = -2ihP,P13 

so, letting +' = a( P-)-~+, 

(@(J+A)4, + ) - (4 ,@(J+*)+r )=(a (J+*)~ ,  $ 7 1  

- ( 4 ,  (@( J+A)-2ih@(PAP11)+')l  

= O  

and thus @( J + * )  is Hermitian under (3.5). Similar reasoning applies to J+- and LTa.  

Comment. While odd elements like @( 0") are anti-Hermitian under (3.5), their counter- 
parts @(Om) are Hermitian. It is also worth noting that the inner product (3.5) is 
indefinite. 

4. The dimensional reduction for the momentum repre,entation 

The key part of the dimensional reduction argument of Parisi and Sourlas consists of 
showing that the Green functions of the (d + 2)-dimensional supersymmetric field 
theory (when the fields themselves are invariant under the osp(2 12) sub-superalgebra) 
are equal to those for a d-dimensional Euclidean field theory. The corresponding 
pseudo-Euclidean dimensional reduction can be demonstrated for a free scalar field 
by examining the inner product in the momentum space representation of 0 3. The 
dimensional reduction in terms of Green functions for a quantised field theory then 
follows as a consequence. A limiting function with convenient properties will be used 
to analyse the inner product, so first this function and its properties will be examined. 
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Lemma 4.1. Let E ,  77 # 0, and introduce the function 

FET has the following properties: 
lim p + p - F , , ( p )  = 1 

E . T - 0  
(i) 

( i i)  

(4.1) 

(4.2) 

Prooj (i)  By inspection. (ii) Observe that 

as E + 0, and that 

= 0. 
1 

@O( J - + )  
p + p - +  E 2  

This leaves 

@o( J-+ 1 Ff 'I ( p ) 

since p -  6( p - )  = 0 and (a/ap-) sgn( p - )  = 2S( p - ) .  

Armed with the function FE,,, it is possible to prove the key component of the 
Parisi-Sourlas mechanism in pseudo-Euclidean space. 

Proposition 4.2. Writing 4 ( p )  = 4 ( p ,  p + ,  p - ) ,  the inner product (3.5) for 4, $ E V with 

@ ( L + e ) d = @ ( L + - ) $ = O  (4.3) 

reduces to 

(4 ,  CL) = d"+"-2p6(p2)d(p,  O,O)*$(p,  0,O). 
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Proof: If Ca( L + o ) 4  = 0 then, from (3.4k), 

&4(p,a)=O (4.4) 
P- 

Since + ( p ,  a) E C"(Z;,  C) for a fixed, the only solution to (4.4) is 

4 ( p ,  a)=O. 
Similar equations apply to JI, leaving the inner product as 

Introducing p + p - F , , ( p )  into the inner product by (4.1), 

(4, lh) = lim (4 ,  p + p -  F E T J I ) .  
E,T+O 

Evaluating the right-hand side, making use of (4.5) and integrating by parts, 

(4, p , p - F , , + )  = dmf"pS(p2)4(p)*lh(p)2ihCa0(J-+)F,,(p) 

+ 5 dm+? P2)4 (PI*+( P ) W  P+)W P-) 

as E, 77 + 0, by (4.2). Integrating out p +  and p -  gives the desired result. 

Comments. The required reduction of one space and one time dimension has been 
achieved, together with the elimination of the parts of the supermultiplet not contained 
in Vo. What remains is the standard inner product for the momentum representation 
of an ordinary classical massless scalar field carrying a unitary irreducible representa- 
tion of iso(m - 1, n - 1). The condition (4.3) is less restrictive than the osp(212) 
invariance used in the usual treatments. 

The dimensional reduction for the Green functions of quantised fields follows by 
virtue of the direct correspondence between vacuum expectation values for quantised 
fields and the inner product for classical fields. For example, for the ordinary ( m  - 1, n - 
1)-dimensional field, a general state 14) of the quantum field can be written in terms 
of the reaction operators a ( p ) '  as 

14) = 1 dm+n-2p S(p2)4(p)a(p)'l) 

where I ) is the vacuum state. The inner product for such general states can be defined 
to be the same as that for the coefficient functions considered as classical fields, 

The commutation rules for the annihilation and creation operators, or equivalently, 
the momentum space Green functions then follow: 

( J ~ ( P ) ~ ( P ' ) + I ) = ~ P ,  ~ ( ~ 2 - p ; ) .  . . S(Pm+n-r-PA+n-2). 
Coordinate space Green functions can be obtained by Fourier transformation. 
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5. Summary 

The kernel of the Parisi-Sourlas mechanism in pseudo-Euclidean space has been 
demonstrated in a direct manner without recourse to Wick rotations. A unitary 
irreducible iosp( m, n 12) supermultiplet of classical momentum space fields has been 
constructed using a modified version of the method of produced representations. This 
procedure has the advantage of being wholly algebraic for the odd part of the 
superalgebra, and thus avoids the need for superspace, superfields or supergroups. 
The required (1,l)-dimensional reduction for the (m, n)-dimensional fields appears 
through examining the metric of the supermultiplet. Extensions of the argument to 
coordinate space, quantum fields, higher spin fields, and so on then follow in the same 
manner as for Euclidean fields. 
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